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Abstract. A carrier on a symmetric dimer with a weak hopping integral, interacting (via a site-local cou-
pling) strongly with on-site oscillators is considered. It is shown that the dynamics of the low excited
nonstationary states is, owing to strong carrier-oscillator correlations, incompatible with that of the non-
linear Liouville equation theory. The oscillators are, owing to carrier-oscillator correlations, fully relaxed
to the instantaneous rather than to the mean carrier position and need no time-delay or relaxation mech-
anism to respond to the shifted carrier’s position, in contrast to the usual Holstein and Davydov picture.
The origin of the standard Debye-Waller renormalization is scrutinized using the Tokuyama-Mori theory
including all the excited states of the oscillators and rigorous statements are made concerning its form.
Limitations on the time interval of applicability of the semiclassical description resulting from the carrier
dynamics are discussed.

PACS. 31.70.Hq Time-dependent phenomena: excitation and relaxation processes, and reactions rates
– 63.20.Ls Phonon interactions with other quasiparticles – 82.20.Rp Energy distribution and transfer;
relaxation

1 Introduction

For discussion of time-development of interacting electron-
(or exciton-) phonon systems, one can apply different
types of kinetic approaches using, e.g., different types
of projection formalisms. Usual projection methods can
yield either time-convolution [1–3] (TC-GME) or time-
convolutionless [4–7] (see also [8] for equivalence of seem-
ingly different approaches) generalized master equations
(TCL-GME) for, e.g., matrix elements of the electron
or exciton (carrier henceforth) density matrix. Another
class of theories are those developed by Mori [9] and
Tokuyama with Mori [10] for time-development of oper-
ators in the Heisenberg picture. The Nakajima-Zwanzig
TC-GME method has recently been proved to be equiv-
alent to that one by Mori [11]; the same applies to the
TCL-GME and Tokuyama-Mori methods [12].

Simultaneously, other methods for treating the prob-
lem of interacting systems have been developed. The first
one goes back to Holstein [13] and Davydov [14,15] and
is based on representing the main effect of phonons (or,
more generally the bath) on the carrier, i.e. selftrapping,
by a nonlinear term in the (nonlinear) Schrödinger equa-
tion. Kenkre with his collaborators as well as others have
developed the method further [16–18]. The method has re-
cently been heavily criticized [19] but no elementary rea-
son has been given so far why this theory, sometimes yield-
ing entirely different results to other approaches, should
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fail. Recently, Salkola, Bishop, Kenkre and Raghavan [20]
came to the conclusion that for the interacting carrier-
phonon problem, the discrete nonlinear Schrödinger equa-
tion (or Liouville equation) approach is well justified only
in a highly limited regime.

The second treatment which became very popular re-
cently in connection with the notion of chaos, is based on a
classical or semiclassical picture of the interacting carrier-
oscillator model [21,22]. Correspondence with the above
nonlinear Schrödinger equation can be then easily found
in the so-called discrete selftrapping approximation but
a semiclassical description of the total carrier-oscillator
complex is in at least the simplest situations possible
[22]. The latter approach, though undoubtedly correct in
the high temperature limit, has, however, also unpleas-
ant limitations. The first one is connected with time: de-
tailed quantum calculations for the carrier-oscillator prob-
lem performed by, e.g., Steib [23] have proved recently
that classical equations of motion say very little about
real quantum behaviour of the system, except for ini-
tially separable carrier-oscillator states and for such lim-
ited time intervals for which this separation persists. The
second type of limitations comes from the very applicabil-
ity of the high-temperature classical description in stan-
dard situations: In, e.g., Anthracene as a typical organic
molecule, intramolecular vibrational modes have energy
quanta ~ω between 0.0149 eV and 0.372 eV. Thus, at room
and lower temperatures, we always have ~ω & kBT (with
kB being the Planck constant and T the temperature).
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This does not allow the classical treatment requiring nec-
essarily ~ω � kBT . Thus, in order to estimate the value
of both the above (nonlinear Schrödinger as well as clas-
sical) approaches, a rather detailed quantum analysis of
the effect of the carrier interaction with surroundings is
needed.

The present work involves only analytical methods.
Anyway, in connection with the fully quantum numeri-
cal work by Steib above [23], one should also mention
that plenty of other numerical works exist on quantum
dynamics of particles coupled to a finite number of modes
which are on the other hand usually devoted to other aims
and problems. We have in mind first of all papers [24–27].
Extensions of these works (devoted to or at least partly
inspired by fast dynamics in concrete molecular systems)
by including coupling to the thermodynamic bath [28,29]
or even external driving fields [30] exist. The most usual
form of including the thermodynamic bath is provided by
so called spin-boson model [31–33]. These generalizations
will not be mentioned in more detail here, however, as the
bath can be practically included by approximate meth-
ods only. Open questions then remain concerning lack of
correspondence of the most usual approximate treatments
[33–35] with more advanced approximate ones [36] or even
rigorous statements especially (but not only) in the long-
time domain [37–39]. The most advanced computer-exact
methods enabling to project off the bath (reducing the
dynamical problem to relatively low-dimensional ones of
the linear algebra) and work with unexpectedly high ac-
curacy in its coupling to the system [40–42] still wait for
applications to a broader class of realistic models.

2 Model

We shall work with a coupled carrier-vibronic system con-
sisting of a symmetric pair of sites (dimer) for the carrier,
interacting via a linear local and symmetric coupling, with
two identical harmonic oscillators coupled each to one of
the respective sites. This is the simplest model allowing
still reliable analytical treatment but able already to dis-
cuss connection to both the above (nonlinear Schrödinger
and classical) methods. Ignoring for simplicity any possi-
ble coupling of the system to the bath, the Hamiltonian
of this standard model reads

H =− V (c†1c2 + c†2c1)

+
1

2m
(p2

1 + p2
2) +

1

2
mω2(q2

1 + q2
2)

+ γ(q1c
†
1c1 + q2c

†
2c2). (1)

Here cr (c†r), r = 1, 2 are the annihilation (creation) op-
erators of the carrier on individual sites, m and ω are the
oscillator mass and frequency, γ is the carrier-oscillator
coupling constant and V (usually taken as a positive num-
ber in order to get the bonding state symmetric) is the
carrier hopping (resonance or transfer) integral due to an
overlap between the localized site (e.g. atomic) states.

As usual, we introduce the centre-of-mass (plus) and
relative (difference or minus) oscillators with coordinates
and momenta

q+ =
1

2
(q1 + q2), q− = q2 − q1,

p+ = p1 + p2, p− =
1

2
(p2 − p1). (2)

This turns (1) to
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Here, we have used the fact that we work with just one

carrier, i.e. (c†2c2 − c
†
1c1)2 = c†2c2 + c†1c1 = 1.

Except for the centre-of-mass oscillator which is fully
decoupled, this is a problem whose analytical solution is
unknown but whose stationary states are well studied and
can be found with numerically arbitrary accuracy [43–45].
Here, however, in order to allow for an analytical treat-
ment of the dynamics, we shall choose a special regime
given by inequalities

γ2

2mω2
� ~ω � |V |. (4)

The first one means that the polaron well depth is much
greater that the phonon energy and may also be writ-
ten as γ/(mω2) �

√
(2~/(mω)), i.e. that polaron shift

of the equilibrium position of the minus-oscillator is much
greater than the radius of its ground-state. That means
that the unshifted, left-shifted and right-shifted ground
states of the oscillator all have very little overlap, i.e. the
renormalization of the hopping integral V by the Debye-
Waller factor (to be discussed below) is appreciable and
quantum effects are thus expected to be quite strong. The
second inequality in (4) allows us to treat, for low excited
states and low degrees of excitation characterized by, e.g.,
effective temperatures fulfilling

kBTeff � ~ω, (5)

the dynamics analytically1.

1 Even outside equilibrium, one can (for such purposes) well
define such temperatures expressing the difference of the mean
and ground state energies, i.e. the mean excitation energy as
kBTeff .
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Owing to (4), the ground and the first excited states
(up to corrections of the order |V |/(~ω)) read

|Ψ±〉=
1
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exp[−
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4
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exp[−
1

4

mω

~
(q− +

γ

mω2
)2]

]
⊗

(
2mω

π~

)1/4

exp[−
mω

~
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The corresponding eigenenergies (up to corrections of the
order |V |2/(~ω)) read

E± = 2
1

2
~ω −

γ2

2mω2
∓ Ṽ ,

Ṽ = V exp

[
−

1

2

γ2

m~ω3

]
. (7)

In approximate treatments, such states are commonly
used as basis states of the small polaron theory [46]. It is,
however, not difficult to see that in the above regime (4),
these states asymptotically coincide with the lowest eigen-
states first derived by Wagner and Koengeter [43]. For
such Wagner and Koengeter eigenstates, it is in general
typical that with, e.g., the carrier on the left (site 1) and,
e.g. positive γ, the wave function of the minus-oscillator is
not simply localized on the same (left) side but also has a
local maximum on the opposite (right) one reminiscent, in
a dynamical language, of the (carrier’s) previous hop from
the right to the left. During this hop the state of the minus-
oscillator remained unchanged and did not succeed (up
to the measurement time) in accommodating to the new
carrier position. Such a behaviour would, however, become
pronounced only for sufficiently large |V |. From the energy
arguments, one can guess that such local maxima on the
opposite side could (for γ/(mω)� (2~/(mω))1/2) be well
distinguished in, e.g., the ground state for |V | & γ2/(mω2)
only, i.e. certainly not in our regime (4). The same applies
to a possibility of obtaining unrelaxed minus-oscillator
states. Both such possibilities do, however, exist among
higher excited states [43,44]. The fact that, with a high
accuracy, at least the ground state to (1) in our regime (4)
reads as (6), has recently been very well illustrated also
by Zhao et al. [51,52].

Let us now specify initial condition for our dynamical
problem. The state which at time t = 0 was

|Ψ(t = 0)〉 = c†1|vaccar〉
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i.e. the state with the initial oscillator polarizations

〈q1〉(t = 0) = 〈q+ −
1

2
q−〉(t = 0) = −

γ

mω2
,

〈q2〉(t = 0) = 〈q+ +
1

2
q−〉(t = 0) = 0 (9)

reads at t > 0
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Clearly, in the sense given by (5), this is (owing to (4))
a low-excited state. With (8) and according to what has
been already said above, corrections to (10) are formally
of the first order in V/(~ω) in the wave function ampli-
tudes and of the second order in energies as prefactors of
time. Correspondingly, for discussions of, e.g., the mean
position of the carrier, they are in our regime (4) irrele-
vant. (The importance of these corrections becomes, how-
ever, amplified when correlation functions are examined -
see Sect. 4 below.) There are several things typical of the
above quantum regime which should be stressed in con-
nection with dynamics described by (10) and the above
(nonlinear Schrödinger and classical) approaches to be dis-
cussed below:

• We never have a full self-localization; the carrier moves
coherently back and forth; the lack of damping is owing
to lack of the genuine bath in our simple model.
• The coherent oscillations of the site occupation proba-

bilities have a frequency Ω which is strongly renormal-
ized by the coupling to the oscillators (Ω = 2|Ṽ |/~ in-
stead of 2|V |/~). The renormalization is, as seen from
(7), due to the standard Debye-Waller factor.
• There is no separation of the wave function to the car-

rier and the oscillatory part2 as assumed in the soliton
theories [13–15]. The wave function contains as many
components (with the carrier on one of the sites) as
the number of these sites. Each of the components has
its own form of the oscillator wave functions which (in
the above regime (4)) strongly differ for different pos-
sible (instantaneous) carrier positions. Thus, there is,
during the time development connected with the car-
rier motion, no relaxation of the oscillator system to
the mean carrier position which may slowly develop
with increasing time (as it corresponds to the soliton
picture by Davydov [15]) but rather an ‘instantaneous’
relaxation of the site oscillators to the instantaneous
carrier position. One should thus strongly distinguish

2 With the former one being extended over more than one
site.
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between the notions of the instantaneous and the mean
carrier positions.
• Concerning the relaxation process: the minus- as well

as site oscillators remain fully relaxed to the instan-
taneous position of the carrier in the sense that for
each possible position of the carrier found (i.e. indi-
vidual component of the wave function (10)), there
is a corresponding state of the oscillators already re-
laxed to this position. (There is no time-delay for the
oscillator relaxation; that is why this relaxation can
be taken as ‘instantaneous’.) With the carrier trans-
fer in space, there is no relaxation of the oscillators
to a new mean carrier position in, e.g., the Davydov
sense (i.e. simultaneously in all the wave-function com-
ponents). In other words, oscillator relaxation to the
instantaneous carrier position is, in our situation, nei-
ther dynamical nor kinematical process but a correla-
tion phenomenon. The oscillator wave functions in the
individual components remain fully unchanged with
increasing time. What changes with t is only a weight
of the wave-function components. That is the reason
why we can have a full accommodation of the oscil-
lators to the moving carrier without any oscillations
of the oscillators around new (shifted with time when
the carrier moves away) equilibrium positions though
we have, in our model, no real relaxation mechanism
(owing to, e.g., a coupling of the oscillators with a true
thermodynamic bath) making such a relaxation feasi-
ble as a real dynamical process.

At least some of these features of our solution con-
tradict the usual understanding of the process of the dy-
namical reconstruction of the lattice near a moving carrier
(polaron).

3 Correspondence with the nonlinear
Schrödinger equation picture

The above mentioned impossibility of writing (in the
above regime (4) and the low-excited state of the system)
the total (carrier + oscillators) function (10) as a product
of the carrier wave function multiplied by the oscillatory
one which should accommodate to the mean carrier po-
sition, means that the original arguments leading to the
nonlinear Schrödinger equation for the carrier only and,
consequently, to, e.g., solitons or selflocalization picture
must necessarily break. Thus, one should scrutinize the
standard derivation to find formally where problems on
the way to the nonlinear Schrödinger equation appear.

From (1), we can write equations of motion for mo-
mentum operators of both the site oscillators

ṗ1 = −mω2q1 − γc
†
1c1,

ṗ2 = −mω2q2 − γc
†
2c2. (11)

If we now assume as usual that the lattice relaxes so fast
to the mean carrier position (or, in our picture, that it is
always relaxed) that the time derivatives of momenta on

the left hand side of (11) become negligible, one can then
express q1 and q2 from (11) as

qr(t) ≈ −
γ

mω2
c†rcr, r = 1, 2 (12)

and introduce the result to (1). Neglecting then the kinetic
energy of the oscillators (i.e. again their momenta), (1)
reduces to

H =− V (c†1c2 + c†2c1)

−
γ2

2mω2
[(c†1c1)2 + (c†2c2)2]. (13)

Here, one should mention that approximation (12) breaks
the commutational rules between qr and c†r or cr. Hence
other orders in the product of the creation and annihila-
tion operators in the nonlinear term in (13) are imaginable
as far as we rearrange the order of (still commuting) op-
erators in (1) before applying (12). They, however, yield
no nonlinearity as, e.g., (c†r)

2 as well as (cr)
2, r = 1, 2

should, in our situation with only one carrier, be consid-
ered as zero. One should remember here that c†r and cr are
still operators. With (13), however, the situation is then
similar as (again for operators) (c†rcr)

2 = c†rcr so that all
the nonlinearity is lost. Thus, one is led to understanding
(12) rather as

qr(t) ≈ −
γ

mω2
〈c†rcr〉, r = 1, 2. (14)

Then, from (1) and (14), we get (upon neglecting the ki-
netic energy of the oscillators)

H =− V (c†1c2 + c†2c1)

−
γ2

mω2
[〈c†1c1〉c

†
1c1 + 〈c†2c2〉c

†
2c2]

+
γ2

2mω2
[(〈c†1c1〉)

2 + (〈c†2c2〉)
2]. (15)

This, as a quantum Hamiltonian, contains no nonlinear-
ity but (owing to the presence of the mean values 〈. . . 〉)
leads to a selfconsistency in equations of motion for matrix
elements of the carrier density matrix

ρmn(t) = 〈c†ncm〉 (16)

derived from (15). The same applies to Schrödinger equa-
tion for site-occupation amplitudes. In other words, these
equations become nonlinear. That is the source of non-
linearity in the non-linear Schrödinger equation [13–16]
which, on the other hand, can yield selflocalization on a
dimer [16,17]. This selflocalization (selftrapping) is, how-
ever, in sharp contradiction to the above solution (10).
Already this observation, of course, questions approxima-
tion (14) as well as the nonlinear Schrödinger equation on
at least dimer. In order to understand why this approxi-
mation is so misleading, let us, therefore examine (14) in
detail.

Necessary but still insufficient condition for (14) to be
reliable is equality of the right hand side and the mean
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value of the left hand side. It really is, using (10),

〈q1〉(t) ≡ 〈Ψ(t)|q1|Ψ(t)〉

= −
γ

2mω2
[1 + cos(2tṼ /~)] = −

γ

mω2
〈c†1c1〉(t),

〈q2〉(t) = −
γ

2mω2
[1− cos(2tṼ /~)]

= −
γ

mω2
〈c†2c2〉(t), (17)

so that (14) is reliable in the mean value sense. This fact
is tempting to interpret as an argument in favour of the
usual Holstein-Davydov assumption that the site oscillator
polarizations follow the mean carrier position. As already
mentioned above, this of course contradicts the structure
of (10). The fact that off-diagonal elements of qr, r = 1, 2
fully neglected by the c-number approximation (14) make
this approximation unacceptable can be best illustrated
by calculating the mean value of the Hamiltonian. Really,
from (10), we get

〈c†1c1〉(t) =
1

2
[1 + cos(2tṼ /~)],

〈c†2c2〉(t) =
1

2
[1− cos(2tṼ /~)],

〈q1c
†
1c1〉(t) = 〈q1〉(t) = −

γ

2mω2
[1 + cos(2tṼ /~)]

〈q2c
†
2c2〉(t) = 〈q2〉(t) = −

γ

2mω2
[1− cos(2tṼ /~)]

〈q2
1〉(t) =

~
2mω

+
γ2

2m2ω4
[1 + cos(2tṼ /~)]

〈q2
2〉(t) =

~
2mω

+
γ2

2m2ω4
[1− cos(2tṼ /~)] (18)

so that from (1), we obtain

〈H〉(t) =
1

2
~ω −

γ2

2mω2
· (19)

On the other hand, from (15), we get

〈H〉(t) =
1

2
~ω −

γ2

4mω2
[1 + cos(2tṼ /~)2]. (20)

This is a time-dependent mean value which immediately
offers an idea of the relation between the degree of this
time-dependence and the tendency of self-trapping (self-
localization) inherent to (15) [16,17]. The difference be-
tween (19) and (20) illustrates the deficiency of (14) lead-
ing to the nonlinear Schrödinger or Liouville equation cor-
responding to the Hamiltonian (15) above, at least in our
situation and in the above regime (4). Specifically, we get
that the nonlinear Schrödinger equation connected with
Hamiltonian (15) can be applied, in our situation, at most

for 0 ≤ t� ~/Ṽ 3. This hinders its application to, e.g., the
localization or self-trapping problem.

Two comments are still worth mentioning. First, one
often argues in favour of (15) by a virtual transition to

3 This is an important criterion which will appear below
again.

the classical description. That would mean replacing mean
values of products of operators by the product of the cor-
responding mean values or vice versa. The invalidity of
this assumption is, in our situation, easily seen already
from (18). It is certain that

〈qrc
†
rcr〉(t) 6= 〈qr〉(t)〈c

†
rcr〉(t),

〈q2
r 〉 6= [〈qr〉(t)]

2. (21)

The second nonequality is certainly not only due to the
finite radius of the oscillator ground states. The second
comment is that the deficiency of the approximation (14)
can be also easily verified even for its possible application
in the quantum equations of motion

dc1
dt
≡
i

~
[H, c1] =

i

~
(V c2 − γc1q1)

≈
i

~
(V c2 − γc1〈q1〉(t)). (22)

Multiplying (22) from the left by c†1 and taking average in
our state (10), we would get approximate equality

−γ〈c†1c1q1〉(t) ≈ −γ〈c
†
1c1〉(t)〈q1〉(t). (23)

From (18), it is easily seen that (23) is, in our regime and
situation, invalid.

4 Origin of renormalization and
correspondence with classical description

For the classical description, it is undoubtedly true (as a
consequence of the Bohr correspondence principle) that
it should be well justified at high enough temperatures.
These temperatures could, on one hand, be much higher
than room temperatures as argued above. On the other
one, with our low-temperature theory, we have no pos-
sibility of direct comparison. That is why we are lim-
ited here just to qualitative arguments using the fact that
quantum equations of motion (applicable at high as well
as low temperatures) have the same (though operator)
form as the corresponding classical equations (applicable
at high enough temperatures) for the corresponding clas-
sical quantities (mean values of the quantum operators).

In order to be specific, let us first introduce three Bloch
operators or quantum variables (instead of four operators
c†rcs, r = 1, 2 fulfilling, in our single carrier space, the

identity c†1c1 + c†2c2 = 1) as

x = c†2c1 + c†1c2,

y = i(c†1c2 − c
†
2c1),

z = c†2c2 − c
†
1c1. (24)

Defining then, for an arbitrary (for simplicity explicitly
time-independent) operator in the Schrödinger picture,

A, the time derivative operator Ȧ ≡ dA/dt = i
~ [H,A],
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we have

ẋ = −
γ

~
q−y, (25)

ẏ =
γ

~
q−x+ 2

V

~
z, (26)

ż = −2
V

~
y, (27)

q̇− = 2p−/m, (28)

2ṗ− = −mω2q− − γz. (29)

The same equations apply, however, for the operators in
the Heisenberg picture with the usual meaning of the time-
derivative. As these equations are exact and apply in the
high (i.e. classical) as well as low temperature regions (in-
cluding our regime (4-5)), at least two open questions ap-
pear in connection with the above discussion:

• If renormalization of the above back-and-forth site-
occupation-probability oscillation frequency Ω =
2Ṽ /~ (instead of Ω = 2V/~) is a genuine really ex-
isting effect in our regime (4-5) as illustrated above
and if the above equations (25-29) apply in all the
regimes, how is it possible that the very form of
(25-29) does not indicate such a renormalization? In
other words, where (in (25-29)) does the renormal-

ization V → Ṽ formally come from? One should add
here that the form of (25-29) can hardly be questioned
in general as these equations are undoubtedly correct
in the classical regime. In the classical regime, on the
other hand, hardly any renormalization of the carrier
dynamics by the Debye-Waller factor is expected (no-
tice that in the last equation in (7) defining the renor-

malized transfer integral Ṽ , there is the Planck con-
stant ~ in the exponential indicating quantum charac-
ter of the renormalization).
• As shown above, at low excitation levels and in our

regime (4) at least, the surroundings (represented here
by the minus-oscillator) is undoubtedly relaxed to the
instantaneous carrier position. By that we mean as
usual that we can find the carrier on various places
but finding it (in a measurement process) on one spe-
cific site, we can be sure that the surroundings is al-
ready accommodated to this specific carrier position
as if the carrier were (for a sufficiently long time) kept
to this position before the act of measurement, need-
ing (in our regime) even no time (following the pre-
vious carrier position experiment) to relax to such a
state. This certainly contradicts the original semiclas-
sical Holstein and Davydov picture of the dynamical
state of the carrier + bath system where the wave func-
tion was factorized into a product of the carrier and
bath wave functions with the former one not being lo-
calized to a single site only and the second one describ-
ing accommodation of the surroundings to the mean
carrier position in the carrier wave packet in question
[13–15]. Thus we can perhaps accept the usual conjec-
ture that the semi-classical Holstein-Davydov assump-
tion (leading to solitons) about approximate factoriz-
ability of the wave function for the above dynamical

process, i.e. about the lattice accommodation to the
mean (instead of the instantaneous) carrier position
during the carrier transfer becomes justified at most at
higher excitation levels (temperatures). If so, a ques-
tion then arises how then this change of behaviour
of the solution to (25-29) follows from structure
of (25-29).

In our opinion, perhaps the semiclassical (Holstein and
Davydov like) character of the solution to (25-29) is con-
nected with a character of the initial state of the dynam-
ical process as one can hardly expect, e.g., a soliton cre-
ation in chains in all situations. Postponing detailed dis-
cussion of this problem to a later publication, we shall
limit our attention here to just the first question above.

Let us first turn our attention to (25-26) as these two
equations contain the influence of the site oscillators which
should cause the above Debye-Waller renormalization re-
flected in the carrier dynamics. With our state (10), we
can take the average obtaining that

〈q−x〉(t) = 〈q−y〉(t) = 0. (30)

This looks like as if there were no effect of the coupling
to the site oscillators on the carrier propagation as seen
in the site occupation probabilities. This is of course not
true and the reason for failure of (30) is that corrections
to (10) and consequently to (30) not taken properly here
are formally of the first order in |V |. This makes the ap-
proximate result (30) insufficiently exact to discuss, e.g.,
the effect of renormalization (i.e. partial cancelling of the
effect) of the second term on the right hand side of (26).

One should realize that in our regime (4), the first and
second terms on the right hand side of (26) may be viewed
as formally (when determined by the relative values of the
corresponding multiplicative constants γ/~ and V/~) the
dominating and small terms, respectively. Hence a high
accuracy is needed when investigating partial cancelation
of the second (formally small) term by the dominating
one which, however, disappears in the lowest order in V .
We shall even show that the first (from the point of view
of multiplicative prefactor in our regime) ‘big’ or ‘domi-
nating’ term on the right hand side of (26) plays, in our
low-temperature regime (4) and for the above carrier dy-
namics, just a minor role of only a small renormalization
correction to the second (‘small’) term proportional to the
small parameter V/~. Thus care is needed in general in
estimating the role of dominating or small terms only via
values of the multiplicative constants.

Arguments for such a picture may be best taken from
the above treatment and solution (10). Another formalism
capable of describing the effect of removing (projecting
off) formally big terms on the dynamics otherwise caused
by formally small terms, is provided by the Tokuyama-
Mori operator method [53]. For our model of a dimer inter-
acting with the polarization oscillator, such a theory has
so far not been presented. Here, we shall therefore limit
ourselves to just a simple perturbational reasoning post-
poning a more detailed treatment based on the Tokuyama-
Mori method to the next Section.
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In view of the assumed smallness of V in our regime
(4), we shall limit to the first order corrections in V and,
for simplicity, we shall include only the first excited states
in each adiabatic potential well4. In addition to Ψ± in (6),
we have to extend our Hilbert space by including states

|Φ±〉 =
1
√

2

[
c†1|vaccar〉 ⊗

(
mω

2π~

)1/4√
mω

~
(q− −

γ

mω2
)

× exp[−
1

4

mω

~
(q− −

γ

mω2
)2]

±c†2|vaccar〉 ⊗

(
mω

2π~

)1/4√
mω

~
(−q− −

γ

mω2
)

× exp[−
1

4

mω

~
(q− +

γ

mω2
)2]

]
(31)

(here, for simplicity, we ignore the above plus-oscillator
which has no influence on the carrier transfer processes).
Then, to the lowest order in V , the lowest two eigenstates
|Ψ ′±〉, replacing |Ψ±〉 read

|Ψ ′±〉 = |Ψ±〉 ∓
Ṽ

~ω
γ

mω2

√
mω

~
|Φ±〉. (32)

For simplicity, we assume the initial condition

|Ψ(t = 0)〉 =
1
√

2
[|Ψ ′+〉+ |Ψ ′−〉], (33)

we have the time-dependent solution

|Ψ(t)〉 =
1
√

2
[|Ψ ′+〉e

−iE+t/~ + |Ψ ′−〉e
−iE−t/~] (34)

(for our purposes to the first order in V here, there is no
need to include the first order corrections to E±). With
that, one can proceed to calculation of the above correla-
tion functions. After straightforward though lengthy cal-
culations, one finds that

γ

~
〈q−x〉 ≈

2Ṽ

~
γ2

m~ω3
exp

(
−

γ2

m~ω3

)
cos

(
2Ṽ t

~

)
. (35)

This is to be compared with

2V

~
〈z〉 ≈ −

2V

~
cos

(
2Ṽ t

~

)
. (36)

The fact that for all the times, (35) and (36) have the
opposite signs (both of them being proportional to V )
illustrates, in the regime (4), the above mentioned renor-
malization of the ‘small’ term by the ‘big’ one.

An interesting comment is, however, also worth men-
tioning here. Comparing (32) with (6), one can see that γ
may also serve as a small parameter in our generalization
of our treatment in Section 2 here. Then the sum of (35)

4 This of course means that we can pretend to at most a
qualitative accuracy henceforth in this section.

and (36), i.e. the solution to (26), can be approximated
to the second order in γ as

〈ẏ〉 ≈ −
2V

~
cos

(
2Ṽ t

~

)
exp

(
−

γ2

m~ω3

)
. (37)

This means a double-renormalization as compared to the
(physically justified) renormalization of V in (7). The solu-
tion of this seeming contradiction is, however, that in addi-
tion to the renormalization (slowing) of the dynamics com-

ing from the V → Ṽ renormalization in the cos(2Ṽ t/~)
factor, we have an additional overlap of the q− oscilla-
tor states relaxed to different carrier positions hidden in
the very definition of the mean value 〈y〉. This situation
is analogous to that one found in [54] where this ‘double
renormalization’ was due to the fact that there is no way
to renormalize, in an manner analogous to above, by mu-
tual compensation of several terms, V on the right hand
side of (27). Detailed discussion then yields that solution
to (26-27) gives together the oscillations properly renor-
malized as in (7) [54]5.

5 Tokuyama-Mori approach to
renormalization

We have already mentioned several reasons why one can-
not expect the V → Ṽ renormalization whenever accept-
ing the classical picture (i.e. the c-number character of
(25-29)) for the minus- (polarization) oscillator. Let us
remember that

• its physical origin consists in overlap of the oscillator
states accommodated to different carrier positions and
the notion of “overlap” does not appear in any classical
theory;
• the quantum Planck constant ~ enters the Debye-

Waller factor in Ṽ in (7).

In order to show that and how the V → Ṽ renormaliza-
tion in the left-right carrier transition results from quan-
tum equations of motion (25-29) we invoke the Tokuyama-
Mori approach [53]. This time-local theory starts from
general quantum equations of motion for operators

d

dt
A(t) =

i

~
[H,A(t)] (38)

(Eqs. (25-29) being just particular cases of (38)) and ap-
plies a properly chosen projector. We have found it useful
and technically very simple to apply a new Mori-like pro-
jector

P . . . = yTr(ρ(0)y . . . ) + zTr(ρ(0)z . . . ) (39)

5 Here, one should notice that we have got the V → Ṽ renor-
malization in expressions for mean values of our observables
but not in operator solutions of the corresponding quantum
equations of motion. So one should comment on the first ques-
tion posed above that this (and not a full replacement V → Ṽ
in the time-dependent operators in (25-29)) is the real meaning
of the Debye-Waller renormalization.
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with the initial (carrier + the polarization oscillator) den-
sity matrix

ρ(0) = |Ψ(t = 0)〉〈Ψ(t = 0)| = |1〉〈1| ⊗ ρph (40)

(see Eq. (8)) where ρph is the phonon density matrix ex-
pressing the initial state of both the q+ and the q− (po-
larization) oscillators (Trphρph = 1). We do not need to
specify necessarily here whether we mean the initially re-
laxed or unrelaxed phonon system around the carrier sit-
uated, at t = 0, at site 1. This yields from the general
Tokuyama-Mori identity [53]

d

dt
G(t) = eiLtPiLG(0) + eiLtPT (t)QiLG(0)

+ eiQLtV(t)QiLG(0),

T (t) = S(t)[1−QS(t)]−1, V(t) = [1−QS(t)]−1,

S(t) = 1−e−iLteiQLt, Q=1−P , G(t)=eiLtG (41)

the set of Tokuyama-Mori equations

d

dt

(
x2(t)
x3(t)

)
=

(
ω22(t) ω23(t)
ω32(t) ω33(t)

)(
x2(t)
x3(t)

)
+

(
f2(t)
f3(t)

)
.

(42)

With our initial condition (40), we have 〈fm(t)〉 ≡
Tr(ρ(0)fm(t)) = 0. For the ‘frequencies’ ωmn(t) determin-
ing oscillations of 〈x2(t)〉 and 〈x3(t)〉, we have general for-
mulae

ωmn(t) = Ωmn + δΩmn(t),

Ωmn = Tr(ρ(0)xniLxm),

δΩmn(t) = Tr(ρ(0)xn[1− e−iLtei(1−P)Lt]

× [1− (1−P)[1− e−iLtei(1−P)Lt]]−1

× (1−P)iLxm). (43)

Everywhere in (42-43), x2 ≡ y and x3 ≡ z and L . . . =
[H, . . . ]/~ is the Liouville superoperator. In general, in
order to get hermitian y(t) and z(t) from hermitian y(0)
and z(0), the frequencies ωmn(t) should be real. This is
not the case for Ωmn and δΩmn(t) separately, however.
As only the sum Ωmn + δΩ(t)mn(t) has a meaning, we
henceforth take only real parts of Ωmn and δΩmn(t) into
account.

Let us take for a while all (even highly excited) oscil-
lator states into account. One then gets easily that the
Ω-matrix reads

Ω =

(
0 2V/~

−2V/~ 0

)
(44)

so that all the oscillation-frequency renormalization (if
any) comes from δΩmn(t). Calculation of the latter quan-
tities is, however, nontrivial. Easily, one gets that

δΩ3n(t) = 0, n = 2, 3 (45)

as (1−P)y = 0. As for the δΩ2n(t) terms, no way has been
found how to find them explicitly. One can verify by direct

calculation, however, that these terms also turn to zero (as

a consequence of the identity (x − iy)|1〉 = 2c†1c2|1〉 = 0)
provided that we neglect all oscillator coordinate or mo-
menta fluctuations identifying (like in the classical treat-
ment), e.g., 〈qr〉 with 〈q〉r etc. That means that in order

to get the V → Ṽ renormalization in (42), one must in-
evitably take the quantum character of q and p into ac-
count.

As already indicated above, this is a difficult task pro-
vided that we take all the oscillator excited states into
account. Instead, therefore, in order to overcome such dif-
ficulties but to include nevertheless the accommodation of
the oscillator system to the carrier position, we limit as
usual (and as above in the second section) to a subspace of
the total Hilbert space spanning the lowest excited states
of the problem. That means, in our situation, to work in
just the basis of states

|φ1〉 = c†1|vaccar〉 ⊗

(
mω

2π~

)1/4

exp[−
1

4

mω

~
(q− −

γ

mω2
)2]

⊗

(
2mω

π~

)1/4

exp[−
mω

~
(q+ +

γ

2mω2
)2],

|φ2〉 = c†2|vaccar〉 ⊗

(
mω

2π~

)1/4

exp[−
1

4

mω

~
(q− +

γ

mω2
)2]

⊗

(
2mω

π~

)1/4

exp[−
mω

~
(q+ +

γ

2mω2
)2], (46)

(compare (6) above). Then, in the matrix representation,

H = const. +

(
0 −Ṽ
−Ṽ 0

)
(47)

so that (in the basis of states |mn) = |m〉〈n| in the Liou-
ville space arranged as |11), |22), |12) and |21)):

L =
1

~


0 0 Ṽ −Ṽ
0 0 −Ṽ Ṽ

Ṽ −Ṽ 0 0

u− Ṽ Ṽ 0 0

 ,

P =

 1 0 0 0
−1 0 0 0
0 0 0 −1
0 0 0 1

 ,

ρ(0) =

1
0
0
0

⊗ ρph. (48)

Here, however, ρph in (48) refers to the phonon den-
sity matrix initially relaxed around the carrier located, at
t = 0, at site 1. Then, unlike above but after a simple
matrix algebra, we get that δΩmn(t) = 0, Ω22 = Ω33 = 0

while Ω23 = −Ω32 = 2Ṽ /~. Thus, (42) yields in this case

d

dt

(
〈y〉(t)
〈z〉(t)

)
=

2Ṽ

~

(
0 1
−1 0

)
·

(
〈y〉(t)
〈z〉(t)

)
· (49)



V. Čápek: Quantum dynamics of interacting excitonic-vibronic dimer 45

The oscillation frequency of the solution is then properly
renormalized by the Debye-Waller factor as usual. Thus,
the quantum equations of motion (25-29) do, in contrast to
their classical counterparts, in principle include the renor-
malization of the oscillation frequency6. The above treat-
ment thus answers the first question posed in Section 4
above. One should anyway add a comment here saying
that the above renormalization is not due to the above
limitations to the approximate wave functions (6). In fact,
this form of the wave functions has not been utilized here.
It may be, on the other hand, interpreted as being due
to the limitation to the same subspace (spanned on states
(6) or (46)) of the total Hilbert space. In order to avoid
this interpretation and beat off similar objections regard-
ing the existence, origin and form of the renormalization,
one must continue the discussion as we are going to do
below.

The solution (49) also allows an estimate of the time-
interval of applicability of the classical solution to our
dimer + oscillator problem. In the classical solution to
(the classical counterpart of) (25-29), the typical time
of the left-right oscillations is ≈ ~/(2|V |) while, in our
regime, for the quantum solution to (25-29), this time

reads ≈ ~/(2|Ṽ |). Thus, owing to the inequality |Ṽ | � |V |
assumed to be valid in our regime (4) (compare (7)), the
latter time should in our situation be appreciably longer.
Hence, when starting from the same initial condition, one
cannot expect the classical solution to describe behaviour
of the quantum system once the time becomes compara-
ble with ≈ ~/(2|V |), i.e. once the classical solution starts
to indicate a left↔right transition. The situation on the
other hand changes (even in our regime (4)) once we ap-
preciably increase the degree of excitation, i.e. effective
temperatures Teff so that (5) becomes disturbed. If we re-
quire even more, namely the high-excitation regime with

kBTeff �
γ2

4mω2
, (50)

(on the right hand side, we have the adiabatic potential
barrier to be overcome in the adiabatic left-right transi-
tions), one can view the carrier-oscillator coupling as only
a weak perturbation. Then the relevant oscillator states
will be practically uninfluenced by this coupling so that
the Debye-Waller renormalization (as a consequence of
accommodation of the polarization oscillator to the left-
or right position of the carrier) is expected to disappear.
Thus the classical and quantum typical times for the right-
left transfer become identical in such a classical domain
and limitations of the above type on applicability of the
classical description of the polarization oscillator disap-
pear too. One should mention the existence of other time-
limitations on the classical description of quantum sys-
tems (see, e.g., [55]).

These results concerning the origin of the V → Ṽ
renormalization are in accord with the standard picture of

6 One should realize here that choosing P = 1 in (41) with
the corresponding choice of G’s, (41) reduces to the quantum
equations of motion (25-29).

the influence of the small polaron formation on the carrier
dynamics as well as the standard explanation of the phys-
ical origin of the Debye-Waller renormalization. A word of
warning is, however, necessary here. From (44) and (45),

we get that ω32 = −2V/~ while in (49), ω32 = −2Ṽ /~.
Checking the difference between above two approaches
starting from the same Hamiltonian (1), one can ascribe
this difference to just inclusion of higher excited oscilla-
tor (i.e. also dimer + oscillators) states in (44) and (45).
Technically, one should notice that ωmn(t) is given by a
trace which should not be changed by choosing another
basis as far as a complete set of states is used as a basis
for calculation of traces. For other models, higher excited
states are in general (owing to possible virtual up- and
down-transitions) known to influence (enhance) apprecia-
bly the dynamics even at low excitation levels [56–59].
For the small polaron model of the present type, no such
detailed treatment exists so far. In order to settle finally
the question about the real existence or non-existence of
the Debye-Waller renormalization, we have found a trick
to include all higher excited oscillator states. Physically,
this means not to pose the question about time depen-
dence of mean values 〈y〉(t) and 〈z〉(t) but rather that of
〈eiΓPzye−iΓPz〉(t) and 〈z〉(t). Here

Γ =
γ

√
2m~ω3

, P = −
i
√

2
(b− b†) (51)

(with b and b† being the annihilation and creation op-
erators for the difference oscillator). This means using,
instead of the above projectors, rather

P . . . = eiΓPzye−iΓPzTr(ρ(0)eiΓPzye−iΓPz . . . )

+ zTr(ρ(0)z . . . ). (52)

Here, limiting our attention to the low excited states, we
assume for the initial density matrix the form with the
minus oscillator relaxed around the carrier located initially
at site 1, i.e.

ρ(0) = eiΓPz |1〉〈1| ⊗ ρphe−iΓPz (53)

with ρph being the unrelaxed canonical phonon density
matrix ρph = e−βHph/Trphe−βHph . Again, (42-43) ap-
plies with, however, x2 = eiΓPzye−iΓPz and x3 = z.
Calculation of all the coefficients in (43) is easy using

the identity that Trph(ρphe2iΓP ) = e−Γ
2(1+2nB) with

nB = 1/(eβ~ω − 1). We get that Ω12 = −Ω21 = 2Ṽ /~,
Ω11 = Ω22 = 0 and δΩmn(t) = O(V 2). So, with the coef-
ficients to the first order in V but including all the excited
states of the minus oscillator, we have

d

dt

(
〈eiΓPzye−iΓPz〉

〈z〉

)
≈

(
0 2Ṽ /~

−2Ṽ /~ 0

)
(54)

×

(
〈eiΓPzye−iΓPz〉

〈z〉

)
+O(V 2).

This provides the rigorous statement about existence and
form of the Debye-Waller renormalization of the back-and-
forth oscillation frequency of the carrier even when all
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the oscillator states are taken into account. A comment
is worth mentioning here that in the derivation of (54),
we have never used any condition for temperature. Thus,
even temperatures T � max(~ω/kB, γ

2/(4mkBω
2)) are

admissable (notice that our initial oscillator temperature
T = 1/(kBβ) with β entering ρph, i.e. ρ(0), T plays the
role of the effective temperature Teff in (50) defined above
as a degree of excitation). This on the other hand contra-
dicts the picture according to which, the carrier-oscillator
coupling should, at T � γ2/(4mkBω

2), be just a small
perturbation and all the Debye-Waller renormalization ef-
fects should disappear. In our opinion, the explanation
of this seeming contradiction lies in higher order terms in
(54): the asymptotic form (as V → 0) of all the coefficients
in (54) as in (54) is correct. On the other hand, for finite
value of V , corrections (of the order ∼ V 2 and higher)
to the lowest order coefficients in (54) become, however,
more and more important with increasing T . This obser-
vation can make both the above seemingly contradicting
statements compatible.

In connection with (54) as a basis for the above state-
ment about existence and form of the Debye-Waller renor-
malization, one should add a word of warning, how-
ever. First, the above renormalization appeared in coef-
ficients in one particular type of theory determining time-
development of mean values of eiΓPzye−iΓPz and z. That
means that in the mean occupation probabilities, one
should in reality always (under the conditions of appli-
cability of our expansion to just the lowest order in V ) see
the Debye-Waller renormalization. Seeing this renormal-
ization in the time-dependence of the solution for, e.g.,
〈z〉(t) means, however,

• neither that any theory starting from, e.g., the wave-
function expansion in terms of unshifted oscillator
states must include the Debye-Waller factors from the
very beginning in, e.g., matrix elements involved7,
• nor that the unrenormalized back-and-forth transfer

frequencies 2|V |/~ should be completely absent in the
contingent solution for such matrix elements of the
Bloch operators which do not enter the mean values
of, e.g., eiΓPzye−iΓPz and z.

On the contrary, we believe that the latter matrix ele-
ments should involve terms oscillating with the above un-
renormalized frequencies. That could be the explanation
why it is, as mentioned above, technically so difficult to
amend (49) or (42) with x2 = y and x3 = z by including
all the higher (shifted or unshifted) oscillator states.

6 Where and how the semiclassical
description may also fail

By semiclassical picture, we mean here as usual a kind of
description of our model in which the dimer is treated in a
quantum fashion while the polarization (minus) oscillator
is taken as classical. From (3), one can see that the plus

7 The renormalization should appear only in the solution for,
e.g., 〈z〉(t).

oscillator fully separates having thus no influence on the
carrier dynamics while the dynamics of the minus oscil-
lator can be then viewed as classical oscillations around
−zγ/(mω2). Here, z is an operator (not a c-number mean
value of z) with two eigenvalues ±1 having the meaning
of the carrier position. (In this way we deviate from an-
other possible model treatment where, in the equations of
motion for the oscillator, z as an operator is replaced by
the mean value of z [60] - compare (29).) Thus, the os-
cillations are, up to a numerical factor −γ/(mω2), viewed
as those around instantaneous (not mean) values of the
carrier position.

In order to check the consistency of this approach, we
calculate equations of motion of exact correlation func-
tions. For the Hamiltonian, we take

H =− V x+
p2
−

m
+

1

4
mω2(q− +

γ

mω2
z)2

+
∑
k

~ωkb†kbk +
1

2
√
N

∑
k

~ωkGkz(bk + b†−k). (55)

Here Gk = g2
k − g

1
k is difference of site local coupling con-

stants of the carrier to the respective site oscillators, ωk are
bath oscillator frequencies for N bath modes with bosonic
creation and annihilation operators b†k and bk. As usual,
we take k as a plane-wave vector of the running mode in
the bath but working with standing modes is also pos-
sible. The bath and its interaction with the dimer has
been added here in order to include possible relaxation
processes. We need that in order

• to verify the possibility and find limits of applicabil-
ity of the semiclassical picture (classical oscillator and
quantum dimer) even for always existing coupling of
the dimer to the bath,
• to show that the limits of applicability of this picture

are not essentially influenced by this coupling.

As for the plus oscillator, it is decoupled from the
dimer in (3) and is entirely ignored here.

Quantum operator equations of motion d/(dt)Â =

(i/~)[Ĥ, Â] for operators bk and b†k can be readily solved.
Introducing the result into those for x, y and z yields

d

dt
x(t) = −

γ

~
q(t)y(t)

+
1

2N

∑
k

ω2
k|Gk|

2

∫ t

0

sin(ωk(t−τ)){z(τ), y(t)} dτ

−
1

2
√
N

∑
k

ωkGk{e
−iωktbk(0)+eiωktb†−k(0), y(t)},
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d

dt
y(t) =

2V

~
z(t) +

γ

~
q(t)x(t)

−
1

2N

∑
k

ω2
k|Gk|

2

∫ t

0

sin(ωk(t− τ)){z(τ), x(t)} dτ

+
1

2
√
N

∑
k

ωkGk{e
−iωktbk(0) + eiωktb†−k(0), x(t)},

d

dt
z(t) = −

2V

~
y(t),

d

dt
q(t) =

2

m
p(t),

d

dt
p(t) = −

1

2
mω2q(t)−

γ

2
z(t). (56)

Here the time-argument at operators designates that the
corresponding operators are in the Heisenberg picture;
{ . . . , . . . } designates an anti-commutator. Usually, one
performs here, e.g., a kind of a Markovian approxima-
tion in order to bring the relaxation terms owing to the
carrier-bath coupling in a more tractable form. This leads
to so-called Bloch equations [61]. In contrast to that type
of reasoning in standard situations, we

• do not know (owing to presumably even strong ex-
citon vs. polarization oscillator coupling) the time-
development of the dimer (exciton) operators if the
coupling to the bath is negligible which complicates
the standard Markovian, rotating wave etc. approxi-
mations,
• do not need for what follows to resort to any approxi-

mations at all.

So we shall stay at the level given by (56) and calculate
directly the quantities of interest.
Using (56), we get easily

d

dt
〈[q(t)±i

2

mω
p(t)]z(t)〉 = −

2V

~
〈[q(t) ± i

2

mω
p(t)]y(t)〉

∓
iγ

mω
∓ iω〈[q(t)± i

2

mω
p(t)]z(t)〉,

d

dt
〈[q(t)±i

2

mω
p(t)]y(t)〉 ≈

2V

~
〈[q(t) ± i

2

mω
p(t)]z(t)〉

+
γ

2~
〈{q(t)±i

2

mω
p(t), q(t)}x(t)〉

∓iω〈[q(t)± i
2

mω
p(t)]y(t)〉. (57)

Here, in the second equation, we have omitted explicitly
the terms which depend on the (presumably weak) cou-
pling to the bath. In what follows, they will be, however,

fully taken into account. From (56), one also gets

d

dt
〈y(t) + iz(t)〉 = −i

2V

~
〈y(t) + iz(t)〉+

γ

~
〈q(t)x(t)〉

−
1

2N

∑
k

ω2
k|Gk|

2

∫ t

0

sin(ωk(t− τ))〈{z(τ), x(t)}〉dτ

+
1

2
√
N

∑
k

ωkGk〈{e
−iωktbk(0) + eiωktb†−k(0), x(t)}〉,

(58)

d

dt
〈y(t)− iz(t)〉 = +i

2V

~
〈y(t)− iz(t)〉+

γ

~
〈q(t)x(t)〉

−
1

2N

∑
k

ω2
k|Gk|

2

∫ t

0

sin(ωk(t− τ))〈{z(τ), x(t)}〉dτ

+
1

2
√
N

∑
k

ωkGk〈{e
−iωktbk(0) + eiωktb†−k(0), x(t)}〉,

(59)

while from (57) (but writing now the terms dependent on
the interaction with the bath explicitly)

d

dt
〈e±iωt[q(t)± i

2

mω
p(t)][y(t) + iz(t)]〉 =

− i
2V

~
〈e±iωt[q(t)± i

2

mω
p(t)][y(t)+iz(t)]〉

+
γ

2~
〈{e±iωt[q(t)± i

2

mω
p(t), q(t)}x(t)〉

−
1

2N

∑
k

ω2
k|Gk|

2

∫ t

0

sin(ωk(t− τ))

× 〈e±iωt[q(t)± i
2

mω
p(t)]{z(τ), x(t)}〉dτ

+
1

2
√
N

∑
k

ωkGg〈e
±iωt[q(t)± i

2

mω
p(t)]

× {e−iωktbk(0) + eiωktb†−k(0), x(t)}〉, (60)

d

dt
〈e±iωt[q(t)± i

2

mω
p(t)][y(t) − iz(t)]〉 =

+ i
2V

~
〈e±iωt[q(t)±i

2

mω
p(t)][y(t)−iz(t)]〉

+
γ

2~
〈{e±iωt[q(t)± i

2

mω
p(t), q(t)}x(t)〉

−
1

2N

∑
k

ω2
k|Gk|

2

∫ t

0

sin(ωk(t− τ))

× 〈e±iωt[q(t)± i
2

mω
p(t)]{z(τ), x(t)}〉dτ

+
1

2
√
N

∑
k

ωkGg〈e
±iωt[q(t)± i

2

mω
p(t)]

× {e−iωktbk(0) + eiωktb†−k(0), x(t)}〉. (61)
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In a similar way, one can proceed also to higher correla-
tion functions. The reason for our writing down such com-
plicated expressions consists in the observation that (58)
is compatible with (60) and, similarly, (59) is compatible
with (61) provided that we approximate

q(t)± i
2

mω
p(t) ≈ A e∓iωt −

γ

mω2
z(t). (62)

Notice that (62) involves neither any information about
the bath nor that about its coupling to the dimer. It is
to be stressed here that in (62), A is a c-number, not
an operator. Equation (62) means therefore, physically,
that irrespective of the above coupling of the dimer to
the bath, the polarization oscillations can be treated as
classical oscillations around the instantaneous (but under-
stood as quasi-static) value of −(γ/(mω2))z(t). (Standard
semiclassical approximation where the polarization oscil-
lations are around mean values of γ

mω2 z(t) determined by
the mean carrier position results from (62) upon averaging
over the latter. Limitations obtained for this form of the
theory are, however, the same.) Equation (62) can also be
derived from the last two equations of (56) provided that
one can neglect the term d

dt z(t). This imposes the follow-
ing conditions on applicability of the classical description
of the polarization oscillator:

|V | � ~ω (63)

(which is compatible with our regime (4)) and for not very
strong coupling to the bath (because a typical time enter-
ing time-dependence of z(t) remains then ≈ ~/(2|V |)) also

0 ≤ t� ~/(2|V |). (64)

Only in the vicinity of equilibrium and in single-time cor-
relation functions where the usual (Debye-Waller) renor-

malization V → Ṽ is expected to appear, one might argue
that the right hand side of (64) could perhaps be sub-

stituted by ~/(2|Ṽ |). This is, however, true only when
we ask about mean values of, e.g., y and z in low ex-
cited states. In other situations and in general matrix el-
ements of these operators, unrenormalized frequencies of
the order ~/(2|V |) necessarily appear as it follows from
(25-29). The problem is, on the other hand that there
is no Debye-Waller renormalization in the semiclassical
theory (the physical origin of this renormalization is due
to overlaps of the polarization oscillator states accommo-
dated to different exciton locations). So, equations (63-64)
are, for our semiclassical model describing the oscillator
classically and the quantum dimer via the density matrix,
limitations on the time and regime of the transport (slow
exciton regime). One should add that describing the oscil-
lator classically but the exciton on the dimer by the usual
wave function [60], the limitations could be less restrictive.
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38. V. Čápek, P. Chvosta, Phys. Rev. A 43, 2819 (1991).
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